Solar Inverters: You Need to Know About

· PV Industry News,About Solar Panels

Introduction:

Inverters are essential elements within solar energy setups, playing a vital part in changing the DC electricity produced by solar panels to AC electricity for powering homes and commercial setups. Dive with us into a comprehensive exploration of the roles and significance of inverters.

What is an inverter?

A solar inverter is a piece of electronic equipment designed to transform direct current (DC) electricity, harnessed by solar photovoltaic (PV) panels, into alternating current (AC) electricity. This transformation is imperative since while solar panels yield DC electricity, most appliances and electrical grids operate on AC. Hence, inverters stand as fundamental in solar energy systems, turning DC into AC suitable for household consumption or for distribution into the electrical grid.

What are the types of inverters?

1. String Inverters

A 'string' refers to an array of solar panels organized in clusters or rows and linked in a series configuration. For a string inverter to operate optimally, it's imperative that all panels within a given string share identical spacing and orientation.

Notably, multiple strings can be connected to a single inverter. In fact, many string inverters feature 2 or even 3 MPPTs (Maximum Power Point Tracking) to accommodate this. This essentially means that different strings of solar panels can be associated with each MPPT. This configuration is particularly advantageous for scenarios such as East/West installations, where two strings of panels can deliver unparalleled solar power generation.

String Inverters

2. Micro inverters

Micro inverters are a relatively new technology that has become a popular choice for home solar PV systems. Given that a solar panel system on a string inverter can be affected by individual panel failures or shadowing, micro inverter systems solve this problem. This is because in a micro inverter system, each individual solar panel has an inverter of its own, thus isolating any problems. As a result, micro inverters are often considered a way to install more solar panels on a roof. As shaded areas are no longer taboo or the need to mix orientations is no longer an issue. Although a micro inverter system is usually more expensive than a traditional string inverter, it can increase your solar power generation and thus improve your return on investment.

Micro inverters

The Maysun Balcony Power Station Mini PV, which contains 2 customized solar panels (390-410W, transparent backsheet) and 2 Hoymiles 400W micro inverters. Micro-inverters enhance the power generation of balcony Balcony Power Station, reducing many potential issues such as the impact of shading, hot spots caused by performance discrepancies between modules, challenges in system scalability, difficulties in monitoring and fault detection, inefficiencies in overall system performance, and safety concerns related to high direct current voltages.

Maysun Solar Balcony Power Station MiniPV 800W

 

3. Hybrid Solar Inverter

When embarking on the installation of a new solar PV system coupled with energy storage, the concept of a hybrid inverter holds substantial appeal. Given that solar panels generate direct current (DC) electricity, it is imperative for an inverter to facilitate the conversion of this DC energy into alternating current (AC) for seamless operation of household appliances. However, it's crucial to acknowledge that solar cells inherently store electricity in DC form. Enter the hybrid solar inverter – a versatile solution adept at not only transforming incoming DC power into AC power but also intelligently directing surplus DC power towards the solar cells for storage or potential sale to the grid. This stored energy can subsequently be tapped into and converted back into AC power whenever your home demands it.

Hybrid Solar Inverter

4. Power Inverter

Power inverters offer many of the same benefits as microinverters and are also located on each individual panel. Power inverters, also known as DC power optimizers, provide panel-level optimization and performance monitoring. Unlike a microinverter system, instead of converting DC to AC power directly on the roof, the optimizer transfers DC power to a string inverter. It may be installed next to your battery storage system. Because they are at the module level, they are often a cheaper alternative to microinverters.

Power Inverter

What are the advantages of inverters?

1. Maximize energy production

Solar inverters track the voltage of your solar array to maximize the operating power of your solar panels so you can produce the most, cleanest power possible.

Grid-connected residential solar inverters are known for producing a more pristine sine wave output – a metric that gauges the seamless transition of electrical current. This superior sine wave quality sets them apart from budget-friendly inverters that generate a modified sine wave. The advantage of a purer sine wave is its ability to guarantee the smooth and efficient operation of delicate and sensitive equipment

Maximize energy production

2. Monitor System Output

Observing your solar power system generating thousands of watts during a sunny day is truly exhilarating. As a result, it's only natural for most homeowners to seek a means of monitoring the performance of their valuable investment.

The majority of solar panel inverters are equipped with built-in mechanisms for displaying real-time energy production. Furthermore, some advanced models offer the convenience of tracking your entire solar system's performance through a dedicated mobile app or a user-friendly website interface. This enables you